Common use of Exp Clause in Contracts

Exp. Phys. 12 (2017) A101. [3] ▇. ▇▇▇▇▇▇▇▇▇ and ▇. ▇▇▇▇▇▇, Progress in high-energy cosmic ray physics, Prog. Part. Nucl. Phys. 98 (2018) 85 [arXiv:1710.11155] [INSPIRE]. [4] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Observation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8 1018 eV, Science 357 (2017) 1266 [arXiv:1709.07321] [INSPIRE]. [5] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Large-scale cosmic-ray anisotropies above 4 EeV measured by the ▇▇▇▇▇▇ ▇▇▇▇▇ Observatory, Astrophys. J. 868 (2018) 4 [arXiv:1808.03579] [INSPIRE]. [6] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, An Indication of anisotropy in arrival directions of ultra-high-energy cosmic rays through comparison to the flux pattern of extragalactic gamma-ray sources, Astrophys. ▇. ▇▇▇▇. 853 (2018) L29 [arXiv:1801.06160] [INSPIRE]. [7] HiRes collaboration, First observation of the ▇▇▇▇▇▇▇-▇▇▇▇▇▇▇▇-▇▇▇▇▇▇ suppression, Phys. Rev. Lett. 100 (2008) 101101 [astro-ph/0703099] [INSPIRE]. [8] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Observation of the suppression of the flux of cosmic rays above 4 × 1019 eV, Phys. Rev. Lett. 101 (2008) 061101 [arXiv:0806.4302] [INSPIRE]. [9] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Measurement of the Energy Spectrum of Cosmic Rays above 1018 eV Using the ▇▇▇▇▇▇ ▇▇▇▇▇ Observatory, Phys. Lett. B 685 (2010) 239 [arXiv:1002.1975] [INSPIRE]. [10] ▇. ▇▇▇▇▇▇▇, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16 (1966) 748 [INSPIRE]. [11] G.T. Zatsepin and V.A. ▇▇▇▇▇▇, Upper limit of the spectrum of cosmic rays, JETP Lett. 4 (1966) 78 [Pisma Zh. Eksp. Teor. Fiz 4 (1996) 114] [INSPIRE]. [12] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Measurement of the Depth of Maximum of Extensive Air Showers above 1018 eV, Phys. Rev. Lett. 104 (2010) 091101 [arXiv:1002.0699] [INSPIRE]. [13] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Depth of maximum of air-shower profiles at the ▇▇▇▇▇▇ ▇▇▇▇▇ Observatory. I. Measurements at energies above 1017.8 eV, Phys. Rev. D 90 (2014) 122005 [arXiv:1409.4809] [INSPIRE]. [14] ▇. ▇▇▇▇▇▇ and A.M. ▇▇▇▇▇▇, On The Heavy Chemical Composition of the Ultra-High Energy Cosmic Rays, Astropart. Phys. 33 (2010) 151 [arXiv:0910.1842] [INSPIRE]. [15] A.M. ▇▇▇▇▇▇, ▇. ▇▇▇▇▇▇ and ▇.▇. ▇▇▇▇▇▇▇▇▇, The need for a local source of ▇▇▇ ▇▇ nuclei, Phys. Rev. D 84 (2011) 105007 [arXiv:1107.2055] [INSPIRE]. [16] ▇. ▇▇▇▇▇▇, Propagation of extragalactic ultra-high energy cosmic-ray nuclei: implications for the observed spectrum and composition, Astropart. Phys. 33 (2012) 39. [17] ▇. ▇▇▇▇▇▇, N.G. ▇▇▇▇▇, ▇. ▇▇▇▇▇▇▇▇▇, ▇.▇. ▇▇▇▇▇▇ and ▇. ▇▇▇▇▇▇▇, Implications of the cosmic ray spectrum for the mass composition at the highest energies, JCAP 10 (2008) 033 [arXiv:0805.4779] [INSPIRE]. JCAP10(2019)022 [18] Telescope Array collaboration, Study of Ultra-High Energy Cosmic Ray composition using Telescope Array’s Middle Drum detector and surface array in hybrid mode, Astropart. Phys. 64 (2015) 49 [arXiv:1408.1726] [INSPIRE]. [19] V.S. ▇▇▇▇▇▇▇▇▇▇ and G.T. Zatsepin, Cosmic rays at ultrahigh-energies (neutrino?), Phys. Lett.

Appears in 2 contracts

Sources: End User Agreement, End User Agreement

Exp. Phys. 12 (2017) A101. [3] ▇. ▇▇▇▇▇▇▇▇▇ and ▇. ▇▇▇▇▇▇, Progress in high-energy cosmic ray physics, Prog. Part. Nucl. Phys. 98 (2018) 85 [arXiv:1710.11155] [INSPIRE]. [4] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Observation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8 1018 eV, Science 357 (2017) 1266 [arXiv:1709.07321] [INSPIRE]. [5] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Large-scale cosmic-ray anisotropies above 4 EeV measured by the ▇▇▇▇▇▇ ▇▇▇▇▇ Observatory, Astrophys. J. 868 (2018) 4 [arXiv:1808.03579] [INSPIRE]. [6] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, An Indication of anisotropy in arrival directions of ultra-high-energy cosmic rays through comparison to the flux pattern of extragalactic gamma-ray sources, Astrophys. ▇. ▇▇▇▇J. Lett. 853 (2018) L29 [arXiv:1801.06160] [INSPIRE]. [7] HiRes collaboration, First observation of the ▇▇▇▇▇▇▇-▇▇▇▇▇▇▇▇-▇▇▇▇▇▇ suppression, Phys. Rev. Lett. 100 (2008) 101101 [astro-ph/0703099] [INSPIRE]. [8] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Observation of the suppression of the flux of cosmic rays above 4 × 1019 eV, Phys. Rev. Lett. 101 (2008) 061101 [arXiv:0806.4302] [INSPIRE]. [9] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Measurement of the Energy Spectrum of Cosmic Rays above 1018 eV Using the ▇▇▇▇▇▇ ▇▇▇▇▇ Observatory, Phys. Lett. B 685 (2010) 239 [arXiv:1002.1975] [INSPIRE]. [10] ▇. ▇▇▇▇▇▇▇, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16 (1966) 748 [INSPIRE]. [11] G.T. Zatsepin and V.A. ▇▇▇▇▇▇, Upper limit of the spectrum of cosmic rays, JETP Lett. 4 (1966) 78 [Pisma Zh. Eksp. Teor. Fiz 4 (1996) 114] [INSPIRE]. [12] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Measurement of the Depth of Maximum of Extensive Air Showers above 1018 eV, Phys. Rev. Lett. 104 (2010) 091101 [arXiv:1002.0699] [INSPIRE]. [13] ▇▇▇▇▇▇ ▇▇▇▇▇ collaboration, Depth of maximum of air-shower profiles at the ▇▇▇▇▇▇ ▇▇▇▇▇ Observatory. I. Measurements at energies above 1017.8 eV, Phys. Rev. D 90 (2014) 122005 [arXiv:1409.4809] [INSPIRE]. [14] ▇. ▇▇▇▇▇▇ and A.M. ▇▇▇▇▇▇, On The Heavy Chemical Composition of the Ultra-High Energy Cosmic Rays, Astropart. Phys. 33 (2010) 151 [arXiv:0910.1842] [INSPIRE]. [15] A.M. ▇▇▇▇▇▇, ▇. ▇▇▇▇▇▇ and ▇.▇. ▇▇▇▇▇▇▇▇▇, The need for a local source of ▇▇▇ ▇▇ nuclei, Phys. Rev. D 84 (2011) 105007 [arXiv:1107.2055] [INSPIRE]. [16] ▇. ▇▇▇▇▇▇, Propagation of extragalactic ultra-high energy cosmic-ray nuclei: implications for the observed spectrum and composition, Astropart. Phys. 33 (2012) 39. [17] ▇. ▇▇▇▇▇▇, N.G. ▇▇▇▇▇, ▇. ▇▇▇▇▇▇▇▇▇Decerprit, ▇.▇. ▇▇▇▇▇▇ and ▇. ▇▇▇▇▇▇▇, Implications of the cosmic ray spectrum for the mass composition at the highest energies, JCAP 10 (2008) 033 [arXiv:0805.4779] [INSPIRE]. JCAP10(2019)022 [18] Telescope Array collaboration, Study of Ultra-High Energy Cosmic Ray composition using Telescope Array’s Middle Drum detector and surface array in hybrid mode, Astropart. Phys. 64 (2015) 49 [arXiv:1408.1726] [INSPIRE]. [19] V.S. ▇▇▇▇▇▇▇▇▇▇ and G.T. Zatsepin, Cosmic rays at ultrahigh-energies (neutrino?), Phys. Lett.

Appears in 1 contract

Sources: End User Agreement