Bibliography [ABD16] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇, ▇▇▇ ▇▇▇, and ▇▇▇ ▇▇▇▇▇. A subfield lattice attack on overstretched NTRU assumptions. In: Springer, 2016, pages 153–178. [AD21] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇ and ▇▇▇ ▇▇▇▇▇. Lattice Attacks on NTRU and LWE: A History of Refinements. In: Compu- tational Cryptography: Algorithmic Aspects of Cryptol- ogy. London Mathematical Society Lecture Note Series. Cambridge University Press, 2021, pages 15–40. [ADPS16] ▇▇▇▇▇ ▇▇▇▇▇, ▇▇▇ ▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, and Pe- ter ▇▇▇▇▇▇▇. Post-quantum Key Exchange–A New Hope. In: 2016, pages 327–343. [AEN19] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇, and ▇▇▇▇▇ ▇. ▇▇▇▇▇▇. Random Lattices: Theory And Practice. Available at ▇▇▇▇▇://▇▇▇▇▇▇▇.▇▇▇▇▇▇.▇▇/bin/random_lattice. pdf. 2019. [AFG13] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇. On the efficacy of solving LWE by reduction to unique-SVP. In: Springer, 2013, pages 293–310. [AGPS20] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇ ▇▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇ ▇. ▇▇▇▇▇▇▇. Estimating quan- tum speedups for lattice sieves. In: Springer, 2020, pages 583–613. [AGVW17] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇, ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇, and ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Revisiting the expected cost of solving uSVP and applications to LWE. In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2017, pages 297–322. [Ajt99] ▇▇▇▇▇▇ ▇▇▇▇▇. Generating Hard Instances of the Short Basis Problem. In: ICALP. 1999, pages 1–9. [AKS01] ▇▇▇▇▇▇ ▇▇▇▇▇, ▇▇▇▇ ▇▇▇▇▇, and ▇. ▇▇▇▇▇▇▇▇▇. A sieve algorithm for the shortest lattice vector problem. In: STOC. 2001, pages 601–610. [AL22] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇ and ▇▇▇▇▇▇▇ ▇▇. Predicting BKZ Z- Shapes on q-ary Lattices. Cryptology ePrint Archive, Re- port 2022/843. 2022. [Alb+15] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇, ▇▇▇▇-▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇ ▇▇▇▇▇▇. On the complex- ity of the BKW algorithm on LWE. In: Designs, Codes and Cryptography 74.2 (2015), pages 325–354. [Alb+19] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇ ▇▇▇▇▇, ▇▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇, ▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇ ▇▇▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇ ▇▇▇▇▇▇▇. The general sieve kernel and new records in lattice reduction. In: Annual International Conference on the Theory and Applications of Cryptographic Tech- niques. Springer. 2019, pages 717–746. [ALL19] ▇▇▇▇▇▇▇ ▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Decoding Challenge. Available at http : / / ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇.▇▇▇. 2019. [AN17] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇ and ▇▇▇▇▇ ▇. ▇▇▇▇▇▇. Random ▇▇▇- ▇▇▇▇▇ revisited: lattice enumeration with discrete prun- ing. In: Eurocrypt. 2017, pages 65–102. [ANS18] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇ ▇. ▇▇▇▇▇▇, and ▇▇▇▇▇ ▇▇▇▇. Quantum lattice enumeration and tweaking discrete pruning. In: Asiacrypt. 2018, pages 405–434. [AP11] ▇▇▇▇ ▇▇▇▇▇ and ▇▇▇▇▇ ▇▇▇▇▇▇▇. Generating Shorter Bases for Hard Random Lattices. In: Theory of Computing Sys- tems 48.3 (Apr. 2011). Preliminary version in STACS 2009, pages 535–553. [AR05] ▇▇▇▇▇ ▇▇▇▇▇▇▇▇ and ▇▇▇▇ ▇▇▇▇▇. Lattice problems in NP coNP. In: J. ACM 52.5 (2005). Preliminary version in FOCS 2004, pages 749–765. [AUV19] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇, and ▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Faster sieving algorithm for approximate SVP with con- stant approximation factors. Cryptology ePrint Archive, Report 2019/1028. 2019. [AWHT16] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇. Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Springer, 2016, pages 789–819. [Bab16] ▇▇▇▇▇▇ ▇▇▇▇▇. Graph isomorphism in quasipolynomial time. In: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016, pages 684– 697. [Bab19] ▇▇▇▇▇▇ ▇▇▇▇▇. Canonical form for graphs in quasipolyno- mial time: preliminary report. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com- puting. 2019, pages 1237–1246. [Bab86] ▇▇▇▇▇▇ ▇▇▇▇▇. On ▇▇▇▇▇▇’ lattice reduction and the near- est lattice point problem. In: Combinatorica 6.1 (1986). Preliminary version in STACS 1985, pages 1–13.
Placement of DNS probes Probes for measuring DNS parameters shall be placed as near as possible to the DNS resolvers on the networks with the most users across the different geographic regions; care shall be taken not to deploy probes behind high propagation-‐delay links, such as satellite links.
Placement of EPP probes Probes for measuring EPP parameters shall be placed inside or close to Registrars points of access to the Internet across the different geographic regions; care shall be taken not to deploy probes behind high propagation-‐delay links, such as satellite links.
Placement of RDDS probes Probes for measuring RDDS parameters shall be placed inside the networks with the most users across the different geographic regions; care shall be taken not to deploy probes behind high propagation-‐delay links, such as satellite links.
Company to Provide Copy of the Prospectus in Form That May be Downloaded from the Internet If requested by the Representatives, the Company shall cause to be prepared and delivered, at its expense, within one business day from the effective date of this Agreement, to the Representatives an “electronic Prospectus” to be used by the Underwriters in connection with the offering and sale of the Offered Shares. As used herein, the term “electronic Prospectus” means a form of Time of Sale Prospectus, and any amendment or supplement thereto, that meets each of the following conditions: (i) it shall be encoded in an electronic format, satisfactory to the Representatives, that may be transmitted electronically by the Representatives and the other Underwriters to offerees and purchasers of the Offered Shares; (ii) it shall disclose the same information as the paper Time of Sale Prospectus, except to the extent that graphic and image material cannot be disseminated electronically, in which case such graphic and image material shall be replaced in the electronic Prospectus with a fair and accurate narrative description or tabular representation of such material, as appropriate; and (iii) it shall be in or convertible into a paper format or an electronic format, satisfactory to the Representatives, that will allow investors to store and have continuously ready access to the Time of Sale Prospectus at any future time, without charge to investors (other than any fee charged for subscription to the Internet as a whole and for on-line time). The Company hereby confirms that it has included or will include in the Prospectus filed pursuant to ▇▇▇▇▇ or otherwise with the Commission and in the Registration Statement at the time it was declared effective an undertaking that, upon receipt of a request by an investor or his or her representative, the Company shall transmit or cause to be transmitted promptly, without charge, a paper copy of the Time of Sale Prospectus.