Cryptography Supplier will maintain policies and standards on the use of cryptographic controls that are implemented to protect Accenture Data.
Bibliography [ABD16] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇, ▇▇▇ ▇▇▇, and ▇▇▇ ▇▇▇▇▇. A subfield lattice attack on overstretched NTRU assumptions. In: Springer, 2016, pages 153–178. [AD21] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇ and ▇▇▇ ▇▇▇▇▇. Lattice Attacks on NTRU and LWE: A History of Refinements. In: Compu- tational Cryptography: Algorithmic Aspects of Cryptol- ogy. London Mathematical Society Lecture Note Series. Cambridge University Press, 2021, pages 15–40. [ADPS16] ▇▇▇▇▇ ▇▇▇▇▇, ▇▇▇ ▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, and Pe- ter ▇▇▇▇▇▇▇. Post-quantum Key Exchange–A New Hope. In: 2016, pages 327–343. [AEN19] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇, and ▇▇▇▇▇ ▇. ▇▇▇▇▇▇. Random Lattices: Theory And Practice. Available at ▇▇▇▇▇://▇▇▇▇▇▇▇.▇▇▇▇▇▇.▇▇/bin/random_lattice. pdf. 2019. [AFG13] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇. On the efficacy of solving LWE by reduction to unique-SVP. In: Springer, 2013, pages 293–310. [AGPS20] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇ ▇▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇ ▇. ▇▇▇▇▇▇▇. Estimating quan- tum speedups for lattice sieves. In: Springer, 2020, pages 583–613. [AGVW17] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇, ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇, and ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Revisiting the expected cost of solving uSVP and applications to LWE. In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2017, pages 297–322. [Ajt99] ▇▇▇▇▇▇ ▇▇▇▇▇. Generating Hard Instances of the Short Basis Problem. In: ICALP. 1999, pages 1–9. [AKS01] ▇▇▇▇▇▇ ▇▇▇▇▇, ▇▇▇▇ ▇▇▇▇▇, and ▇. ▇▇▇▇▇▇▇▇▇. A sieve algorithm for the shortest lattice vector problem. In: STOC. 2001, pages 601–610. [AL22] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇ and ▇▇▇▇▇▇▇ ▇▇. Predicting BKZ Z- Shapes on q-ary Lattices. Cryptology ePrint Archive, Re- port 2022/843. 2022. [Alb+15] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇, ▇▇▇▇-▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇ ▇▇▇▇▇▇. On the complex- ity of the BKW algorithm on LWE. In: Designs, Codes and Cryptography 74.2 (2015), pages 325–354. [Alb+19] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇ ▇▇▇▇▇, ▇▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇, ▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇ ▇▇▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇ ▇▇▇▇▇▇▇. The general sieve kernel and new records in lattice reduction. In: Annual International Conference on the Theory and Applications of Cryptographic Tech- niques. Springer. 2019, pages 717–746. [ALL19] ▇▇▇▇▇▇▇ ▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Decoding Challenge. Available at http : / / ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇.▇▇▇. 2019. [AN17] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇ and ▇▇▇▇▇ ▇. ▇▇▇▇▇▇. Random ▇▇▇- ▇▇▇▇▇ revisited: lattice enumeration with discrete prun- ing. In: Eurocrypt. 2017, pages 65–102. [ANS18] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇ ▇. ▇▇▇▇▇▇, and ▇▇▇▇▇ ▇▇▇▇. Quantum lattice enumeration and tweaking discrete pruning. In: Asiacrypt. 2018, pages 405–434. [AP11] ▇▇▇▇ ▇▇▇▇▇ and ▇▇▇▇▇ ▇▇▇▇▇▇▇. Generating Shorter Bases for Hard Random Lattices. In: Theory of Computing Sys- tems 48.3 (Apr. 2011). Preliminary version in STACS 2009, pages 535–553. [AR05] ▇▇▇▇▇ ▇▇▇▇▇▇▇▇ and ▇▇▇▇ ▇▇▇▇▇. Lattice problems in NP coNP. In: J. ACM 52.5 (2005). Preliminary version in FOCS 2004, pages 749–765. [AUV19] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇, and ▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Faster sieving algorithm for approximate SVP with con- stant approximation factors. Cryptology ePrint Archive, Report 2019/1028. 2019. [AWHT16] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇. Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Springer, 2016, pages 789–819. [Bab16] ▇▇▇▇▇▇ ▇▇▇▇▇. Graph isomorphism in quasipolynomial time. In: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016, pages 684– 697. [Bab19] ▇▇▇▇▇▇ ▇▇▇▇▇. Canonical form for graphs in quasipolyno- mial time: preliminary report. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com- puting. 2019, pages 1237–1246. [Bab86] ▇▇▇▇▇▇ ▇▇▇▇▇. On ▇▇▇▇▇▇’ lattice reduction and the near- est lattice point problem. In: Combinatorica 6.1 (1986). Preliminary version in STACS 1985, pages 1–13.
System Logging The system must maintain an automated audit trail which can 20 identify the user or system process which initiates a request for PHI COUNTY discloses to 21 CONTRACTOR or CONTRACTOR creates, receives, maintains, or transmits on behalf of COUNTY, 22 or which alters such PHI. The audit trail must be date and time stamped, must log both successful and 23 failed accesses, must be read only, and must be restricted to authorized users. If such PHI is stored in a 24 database, database logging functionality must be enabled. Audit trail data must be archived for at least 3 25 years after occurrence.
Database The LERG is available through Telcordia. ICONN is available through the Qwest web site.
Web Site Information on registration for and use of the E-Verify program can be obtained via the Internet at the Department of Homeland Security Web site: ▇▇▇▇://▇▇▇.▇▇▇.▇▇▇/E-Verify.