Newsletter ☐ Yes, I would like to receive the newsletter. The monthly newsletter serves to keep you informed about new courses, new teachers, new developments, as well as internal and external events hosted by the GMS, its teachers and its partners. To send the newsletter, we use the mail service provider 'Mailchimp' from the United States. The provider is the Rocket Science Group LLC, ▇▇▇ ▇▇▇▇▇ ▇▇ ▇▇▇▇ Ave NE, Suite 5000,Atlanta,GA 30308, USA. They store the mail address, and, where applicable, the first name and the IP address. For further information, please read the data protection agreement. ☐ Yes, I hereby grant my consent. Without the agreement it is not possible to subscribe to the newsletter. I can cancel the agreement at any point in the future. Use of photo, audio and video-material To promote itself and its own events, courses and programs the GMS uses photo material and sometimes audio or video recordings. ☐ Yes, I hereby grant my consent to the GMS to use photos of myself (or of my child) as well as audio/video recordings made of courses, workshops or events for promotional purposes without requiring special permission. I can cancel this agreement any point in the future.
Images If applicable, the CONSULTANT is prohibited from capturing on any visual medium images of any property, logo, student, or employee of the DISTRICT, or any image that represents the DISTRICT without express written consent from the DISTRICT.
Links If The Services are made available through the Internet, the Financial Institution’s website may provide links to other websites, including those of Third Parties who may also provide services to You. You acknowledge that all those other websites and Third Party services are independent from the Financial Institution’s and may be subject to separate agreements that govern their use. The Financial Institution and Central 1 have no liability for those other websites or their contents or the use of Third Party services. Links are provided for convenience only, and You assume all risk resulting from accessing or using such other websites or Third Party services.
Video This restriction includes, but is not limited to, use of the Beat and/or New Song in television, commercials, film/movies, theatrical works, video games, and in any other form on the Internet which is not expressly permitted herein.
Bibliography [ABD16] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇, ▇▇▇ ▇▇▇, and ▇▇▇ ▇▇▇▇▇. A subfield lattice attack on overstretched NTRU assumptions. In: Springer, 2016, pages 153–178. [AD21] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇ and ▇▇▇ ▇▇▇▇▇. Lattice Attacks on NTRU and LWE: A History of Refinements. In: Compu- tational Cryptography: Algorithmic Aspects of Cryptol- ogy. London Mathematical Society Lecture Note Series. Cambridge University Press, 2021, pages 15–40. [ADPS16] ▇▇▇▇▇ ▇▇▇▇▇, ▇▇▇ ▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, and Pe- ter ▇▇▇▇▇▇▇. Post-quantum Key Exchange–A New Hope. In: 2016, pages 327–343. [AEN19] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇, and ▇▇▇▇▇ ▇. ▇▇▇▇▇▇. Random Lattices: Theory And Practice. Available at ▇▇▇▇▇://▇▇▇▇▇▇▇.▇▇▇▇▇▇.▇▇/bin/random_lattice. pdf. 2019. [AFG13] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇. On the efficacy of solving LWE by reduction to unique-SVP. In: Springer, 2013, pages 293–310. [AGPS20] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇ ▇▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇ ▇. ▇▇▇▇▇▇▇. Estimating quan- tum speedups for lattice sieves. In: Springer, 2020, pages 583–613. [AGVW17] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇, ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇, and ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Revisiting the expected cost of solving uSVP and applications to LWE. In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2017, pages 297–322. [Ajt99] ▇▇▇▇▇▇ ▇▇▇▇▇. Generating Hard Instances of the Short Basis Problem. In: ICALP. 1999, pages 1–9. [AKS01] ▇▇▇▇▇▇ ▇▇▇▇▇, ▇▇▇▇ ▇▇▇▇▇, and ▇. ▇▇▇▇▇▇▇▇▇. A sieve algorithm for the shortest lattice vector problem. In: STOC. 2001, pages 601–610. [AL22] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇ and ▇▇▇▇▇▇▇ ▇▇. Predicting BKZ Z- Shapes on q-ary Lattices. Cryptology ePrint Archive, Re- port 2022/843. 2022. [Alb+15] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇, ▇▇▇▇-▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇ ▇▇▇▇▇▇. On the complex- ity of the BKW algorithm on LWE. In: Designs, Codes and Cryptography 74.2 (2015), pages 325–354. [Alb+19] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇ ▇▇▇▇▇, ▇▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇, ▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇ ▇▇▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇ ▇▇▇▇▇▇▇. The general sieve kernel and new records in lattice reduction. In: Annual International Conference on the Theory and Applications of Cryptographic Tech- niques. Springer. 2019, pages 717–746. [ALL19] ▇▇▇▇▇▇▇ ▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Decoding Challenge. Available at http : / / ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇.▇▇▇. 2019. [AN17] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇ and ▇▇▇▇▇ ▇. ▇▇▇▇▇▇. Random ▇▇▇- ▇▇▇▇▇ revisited: lattice enumeration with discrete prun- ing. In: Eurocrypt. 2017, pages 65–102. [ANS18] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇ ▇. ▇▇▇▇▇▇, and ▇▇▇▇▇ ▇▇▇▇. Quantum lattice enumeration and tweaking discrete pruning. In: Asiacrypt. 2018, pages 405–434. [AP11] ▇▇▇▇ ▇▇▇▇▇ and ▇▇▇▇▇ ▇▇▇▇▇▇▇. Generating Shorter Bases for Hard Random Lattices. In: Theory of Computing Sys- tems 48.3 (Apr. 2011). Preliminary version in STACS 2009, pages 535–553. [AR05] ▇▇▇▇▇ ▇▇▇▇▇▇▇▇ and ▇▇▇▇ ▇▇▇▇▇. Lattice problems in NP coNP. In: J. ACM 52.5 (2005). Preliminary version in FOCS 2004, pages 749–765. [AUV19] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇, and ▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Faster sieving algorithm for approximate SVP with con- stant approximation factors. Cryptology ePrint Archive, Report 2019/1028. 2019. [AWHT16] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇. Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Springer, 2016, pages 789–819. [Bab16] ▇▇▇▇▇▇ ▇▇▇▇▇. Graph isomorphism in quasipolynomial time. In: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016, pages 684– 697. [Bab19] ▇▇▇▇▇▇ ▇▇▇▇▇. Canonical form for graphs in quasipolyno- mial time: preliminary report. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com- puting. 2019, pages 1237–1246. [Bab86] ▇▇▇▇▇▇ ▇▇▇▇▇. On ▇▇▇▇▇▇’ lattice reduction and the near- est lattice point problem. In: Combinatorica 6.1 (1986). Preliminary version in STACS 1985, pages 1–13.