Bibliography [ABD16] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇, ▇▇▇ ▇▇▇, and ▇▇▇ ▇▇▇▇▇. A subfield lattice attack on overstretched NTRU assumptions. In: Springer, 2016, pages 153–178. [AD21] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇ and ▇▇▇ ▇▇▇▇▇. Lattice Attacks on NTRU and LWE: A History of Refinements. In: Compu- tational Cryptography: Algorithmic Aspects of Cryptol- ogy. London Mathematical Society Lecture Note Series. Cambridge University Press, 2021, pages 15–40. [ADPS16] ▇▇▇▇▇ ▇▇▇▇▇, ▇▇▇ ▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, and Pe- ter ▇▇▇▇▇▇▇. Post-quantum Key Exchange–A New Hope. In: 2016, pages 327–343. [AEN19] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇, and ▇▇▇▇▇ ▇. ▇▇▇▇▇▇. Random Lattices: Theory And Practice. Available at ▇▇▇▇▇://▇▇▇▇▇▇▇.▇▇▇▇▇▇.▇▇/bin/random_lattice. pdf. 2019. [AFG13] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇. On the efficacy of solving LWE by reduction to unique-SVP. In: Springer, 2013, pages 293–310. [AGPS20] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇ ▇▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇ ▇. ▇▇▇▇▇▇▇. Estimating quan- tum speedups for lattice sieves. In: Springer, 2020, pages 583–613. [AGVW17] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇, ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇, and ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Revisiting the expected cost of solving uSVP and applications to LWE. In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2017, pages 297–322. [Ajt99] ▇▇▇▇▇▇ ▇▇▇▇▇. Generating Hard Instances of the Short Basis Problem. In: ICALP. 1999, pages 1–9. [AKS01] ▇▇▇▇▇▇ ▇▇▇▇▇, ▇▇▇▇ ▇▇▇▇▇, and ▇. ▇▇▇▇▇▇▇▇▇. A sieve algorithm for the shortest lattice vector problem. In: STOC. 2001, pages 601–610. [AL22] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇ and ▇▇▇▇▇▇▇ ▇▇. Predicting BKZ Z- Shapes on q-ary Lattices. Cryptology ePrint Archive, Re- port 2022/843. 2022. [Alb+15] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇, ▇▇▇▇-▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇ ▇▇▇▇▇▇. On the complex- ity of the BKW algorithm on LWE. In: Designs, Codes and Cryptography 74.2 (2015), pages 325–354. [Alb+19] ▇▇▇▇▇▇ ▇. ▇▇▇▇▇▇▇▇, ▇▇▇ ▇▇▇▇▇, ▇▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇, ▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇ ▇▇▇▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇ ▇▇▇▇▇▇▇. The general sieve kernel and new records in lattice reduction. In: Annual International Conference on the Theory and Applications of Cryptographic Tech- niques. Springer. 2019, pages 717–746. [ALL19] ▇▇▇▇▇▇▇ ▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Decoding Challenge. Available at http : / / ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇.▇▇▇. 2019. [AN17] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇ and ▇▇▇▇▇ ▇. ▇▇▇▇▇▇. Random ▇▇▇- ▇▇▇▇▇ revisited: lattice enumeration with discrete prun- ing. In: Eurocrypt. 2017, pages 65–102. [ANS18] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇ ▇. ▇▇▇▇▇▇, and ▇▇▇▇▇ ▇▇▇▇. Quantum lattice enumeration and tweaking discrete pruning. In: Asiacrypt. 2018, pages 405–434. [AP11] ▇▇▇▇ ▇▇▇▇▇ and ▇▇▇▇▇ ▇▇▇▇▇▇▇. Generating Shorter Bases for Hard Random Lattices. In: Theory of Computing Sys- tems 48.3 (Apr. 2011). Preliminary version in STACS 2009, pages 535–553. [AR05] ▇▇▇▇▇ ▇▇▇▇▇▇▇▇ and ▇▇▇▇ ▇▇▇▇▇. Lattice problems in NP coNP. In: J. ACM 52.5 (2005). Preliminary version in FOCS 2004, pages 749–765. [AUV19] ▇▇▇▇▇▇ ▇▇▇▇▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇, and ▇▇▇▇▇ ▇▇▇▇▇▇▇▇. Faster sieving algorithm for approximate SVP with con- stant approximation factors. Cryptology ePrint Archive, Report 2019/1028. 2019. [AWHT16] ▇▇▇▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇, ▇▇▇▇▇▇ ▇▇▇▇▇▇▇, and ▇▇▇▇▇▇▇▇ ▇▇▇▇▇▇. Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Springer, 2016, pages 789–819. [Bab16] ▇▇▇▇▇▇ ▇▇▇▇▇. Graph isomorphism in quasipolynomial time. In: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing. 2016, pages 684– 697. [Bab19] ▇▇▇▇▇▇ ▇▇▇▇▇. Canonical form for graphs in quasipolyno- mial time: preliminary report. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com- puting. 2019, pages 1237–1246. [Bab86] ▇▇▇▇▇▇ ▇▇▇▇▇. On ▇▇▇▇▇▇’ lattice reduction and the near- est lattice point problem. In: Combinatorica 6.1 (1986). Preliminary version in STACS 1985, pages 1–13.
Images If applicable, the CONSULTANT is prohibited from capturing on any visual medium images of any property, logo, student, or employee of the DISTRICT, or any image that represents the DISTRICT without express written consent from the DISTRICT.
Prospectuses and Marketing Materials We shall furnish you without charge reasonable quantities of offering Prospectuses (including any supplements currently in effect), current shareholder reports of the Funds, and sales materials issued by us from time to time. In the purchase of shares through us, you are entitled to rely only on the information contained in the offering Prospectus(es). You may not publish any advertisement or distribute sales literature or other written material to the public that makes reference to us or any of the Funds (except material that we furnished to you) without our prior written approval.
Artwork Licensee must use the Java Logo(s) only in the exact form of approved camera-ready artwork or electronic artwork received from Oracle or Oracle's designee.
Topographic Survey The Professional shall obtain a topographic and utility survey as described below. 4.1.1. The Professional shall tie in all existing surface topographic features and structures within the survey limits shown in Figure 1. This survey shall include: tops of curbs, edges of pavement, pavement materials, driveways, sidewalks, retaining walls, drainage structures (top, edges and flow line), channels and drainage ways (tops, toes and flow line), manholes (rim, flow lines and diameters of pipes, type of material and photographs of the inside of manholes and drainage structures), including the same survey data for upstream and downstream manholes and structures that are outside of the survey limits for all gravity wastewater and drainage lines within the survey limits. Visible valves, meters, clean-outs, slabs, utility signs, utility poles and structures, fences, landscaping features, shrubbery, trees (including the approximate drip-line), tree canopies, buildings (edges within the survey limits) mailboxes, etc. Trees shall be tagged and tabulated by size and species specific in compliance with the City of New Braunfels Tree Preservation ordinance as defined in the City of New Braunfels Zoning Ordinance Chapter 5.3- 5i. The survey limits shall extend approximately 100 feet on intersecting streets. The Professional shall provide sufficient ground shots to create one (1) foot contours for the Project. 4.1.2. The Professional shall conduct a utility survey and locate existing utilities within the Project boundary in Figure 1. The Professional shall contact all utility service providers by calling Texas 811 and the NBU Project Manager to coordinate flagging of existing franchise utilities. The Professional shall request drawings of existing agency and municipal owned utilities and shall include locations of these utilities in the survey. The Professional shall tie in the locations of the discovered utilities on the survey. The Professional shall bear all costs for the Services associated with utility locates. 4.1.3. The Professional shall locate up to ten (10) geotechnical borings and tie them in to the Project survey. 4.1.4. The Professional shall set and install control points and/or benchmarks as required for the survey work (minimum 1-foot intervals). The Professional shall provide horizontal and vertical coordinates of the benchmarks in the required coordinate system and datum and show the benchmarks on the survey drawing. 4.1.5. The Professional shall research and review adjoining plats and deeds along the survey corridor. The Professional shall locate property corners and identify existing right of way (“ROW”), along the survey corridor, based on found monuments and record documents.